
Intensity and Distance Thresholding in
Hardware to Enable Flexible Blob
Detection for a Vision System with

Limited Bandwidth

Peter Samarin, Timur Saitov, Kenneth B. Kent, Rainer Herpers

This work presents an approach to blob detection that divides the processing
between an FPGA and a PC and balances the precision of blob detection with
the bandwidth usage. The FPGA receives images in a raster-scan order from an
on-board camera and separates foreground pixels from the background by using
two thresholds—an intensity threshold and a distance threshold. The foreground
pixels are transferred to the PC by an Ethernet interface.

The PC performs blob detection on received images by using connected compo-
nent labeling and calculates the centers of mass of each detected blob. Evaluation
results show that for a camera that captures 8-bit grayscale images with resolution
of 640x480 pixels, running at 100 frames per second and a bandwidth limited to
50 Mbit/s, the FPGA is able to transmit a sufficiently large number of blobs that
allows for high precision blob detection to be performed on the PC in real time.

1 Introduction

Detection and analysis of binary large objects (blobs) is an important problem in computer
vision, and is often used for image segmentation and extraction of features from objects of
interest. Blob detection is used in our virtual reality environment—the Immersion Square
(Herpers et al., 2005)—as an intermediate step in estimating position and orientation of an
interaction device (Bochem et al., 2010).

In the current version of the Immersion Square, the user is surrounded by three projection
screens and can interact with the system by using a mobile 6 degrees of freedom interaction
device. Three projectors cast a set of infrared light spots arranged in a specific pattern onto
the screens from the back. The interaction device is composed of a camera and an FPGA that
transmits data to a PC over a wireless interface. User input is generated based on the 3D
position and orientation (pose) of the device, which is computed by detecting the centers of
bright spots and by computing the pose that best matches the pattern (Scherfgen et al., 2011).

It has been shown in previous research that for 3D pose estimation out of blob patterns,
high precision in the sub-pixel range of the blob detection process is mandatory (Bochem et al.,
2010). For that, high level image processing approaches need to be applied, which, however,

1

cause performance and implementation conflicts on FPGA side. In (Bochem et al., 2010), the
computation of centers of the bright spots was performed completely on the FPGA. However,
the results were not accurate enough for subsequent camera pose estimation because for
bright spots with smooth borders caused by a real light scattering and camera chip smoothing,
approaches only using intensity thresholding produce sharp cutting borders. These borders
oscillate due to the absence of a hysteresis and cause notable changes in calculation of the
center of mass of each blob.

In this contribution, a hybrid approach to blob detection for our system with limited
bandwidth is presented, where an FPGA is used to preprocess the images by extracting the
foreground pixels of roughly detected blobs and sending them to the PC. The foreground pixels
are separated from the background pixels by using an intensity threshold in combination with a
distance threshold. On PC side, the centers of the bright spots are computed in subpixel precision
and are subsequently used to estimate the 3D camera pose. This approach is implemented and
evaluated on a prototype with a bandwidth limited to 100 Mbit/s.

2 Approach

The high level view of the approach is shown in Figure 1. Camera images arrive in a raster scan
order at the FPGA. Small parts of the image are stored in a partial frame buffer for later lookup.
The foreground pixels are separated from the background pixels by using two thresholds. The
first threshold compares the intensities of pixels with a predefined value and discards pixels
whose intensities are lower. Pixels whose intensities exceed the threshold are considered as
foreground pixels. The second threshold extends the borders of the blob by adding pixels
within a fixed range of each blob. A bitmap is used to temporarily keep the status of each
pixel—whether a pixels belongs to foreground or to the background. The bitmap is used in a
later step to look up the intensities of each foreground pixel in the partial frame buffer. The
intensities and their coordinates are run-length encoded and sent to the PC by following a
custom data transfer protocol that is based on the Ethernet protocol. The PC performs blob
analysis on received image regions and extracts features from each blob.

2.1 Foreground Pixel Recognition on FPGA

2.1.1 Intensity and Distance Thresholding

When the intensity threshold TI is used to separate foreground pixels from the background,
all pixels whose intensities exceed a predefined threshold are retained and all other pixels are
discarded. The upper part of Figure 2(a) shows a magnified image of a bright spot generated by
a laser directed at the screen of our virtual reality environment. The lower part of Figure 2(a)
plots the corresponding intensities as elevation along the Z-axis. Thresholding with the intensity
threshold of 10, as shown in Figure 2(b), corresponds to drawing a plane that is parallel to the
XY plane at intensity equal to 10.

One of the challenges of using the intensity threshold is to define a value that allows
accurate feature extraction without exceeding the available bandwidth. If the threshold is set
too high, it can cut off important pixels on the edge of the bright spots and negatively impact
the precision of further processing. Conversely, if the threshold is set too low, many pixels will
be considered as foreground pixels, which will result in high bandwidth usage.

FPGA PC

Input stream

Interval FIFO

Data transfer
FIFO

Partial
frame
bu�er

Bitmap
0 1 1 1

101
0 00
0 1

...

...
...

...

Two
thresholds

>

Run length
encoding

Intensities
lookup

Data
transfer

Data
capture

Blob
detection

Feature
extraction

centers
of

mass

bounding
boxes

Figure 1: System design. Processing is split up between FPGA and PC. On FPGA side two
thresholds are applied onto camera images and transfers foreground image parts to
the PC. Connected component labeling as well as the extraction of features of the
foreground pixels is computed on PC side.

To overcome this problem, a second threshold called the distance threshold TD extends the
blob border obtained from applying the intensity threshold. The distance threshold is based on
chessboard distance (Borgefors, 1986). The chessboard distance between two pixels is defined
as: D(x1, y1, x2, y2) = max(|x1 − x2|, |y1 − y2|). The underlying reason of this approach is
that a Gaussian distribution of the blob shape and therefore a point-symmetrical blob shape on
image level is assumed.

When the distance threshold TD is used in combination with the intensity threshold TI ,
all pixel that are within a fixed chessboard distance TD from the foreground pixels that pass
the intensity threshold, are also considered foreground pixels. Figure 2(d) shows the result
of applying both thresholds. By using two thresholds, the intensity threshold can be set to a
relatively high value, while the distance threshold allows control over the bandwidth usage by
extending or shrinking the blob boundaries by a fixed distance.

2.1.2 Thresholding Implementation

In case when only the intensity threshold is used, the foreground pixels can be sent directly to
the PC. However, when the distance threshold is applied, further background pixels might have
to be added after processing several lines. Hence, all foreground pixels must be temporarily
stored before they are sent to the PC.

Our approach implements the two thresholds by using a bitmap that holds a binary version
of several lines of the camera image after the intensity threshold has been applied. The bitmap
only needs one bit for storing the pixel status (’0’ denotes background pixels, ’1’ denotes
foreground pixels). The algorithm 1 shows how thresholding with the intensity threshold TI
and the distance thresholds TD is performed. Line 1 applies intensity thresholding to pixel
P(x , y). Lines 2 and 3 loop over all the pixels that are within the distance threshold TD from P.

The bitmap is implemented in hardware by using registers that allow random access and

250
200
150
100

50
0

In
te

ns
ity

(a) Original (b) (c) (d)

Figure 2: Intensity and distance thresholding approach. (a) Magnified image (top), and the
same image with intensities plotted as elevation along the Z-axis (bottom). (b)
Application of the intensity threshold of TI = 10 results in a border that is shown
by the dashed blue line surrounding the bright spot. Pixels inside this border are
considered as foreground pixels, while pixels outside of the border are background.
(c) Application of the intensity threshold TI = 50. (d) Using intensity threshold
TI = 50 in combination with the distance threshold TD = 2. Pixels added by TD are
marked by yellow color.

Input : Pixel intensity I[x; y], pixel coordinates x and y

1 if I[x; y]> TI
2 for xD = −TD to TD
3 for yD = −TD to TD
4 if not(pixelOutOfBounds(x , y, xD, yD))
5 ybi tmap←− mapImageToBitmap(y, yD)
6 bitmap [x + xD; ybi tmap]←− ’1’

Algorithm 1: Implementation of intensity and distance thresholding on FPGA.

can be read and written in the same clock cycle. Every time when a new foreground pixel is
detected by the intensity threshold, MxM bits are set to ’1’ in the bitmap, where M = 2∗ TD+1.
The MxM image region includes all pixels within the chessboard distance of TD surrounding
the foreground pixel.

2.2 Data Transfer

After applying thresholding to an image line y, the foreground pixels in line y − TD are
transmitted to the PC. The bitmap is used to look up the status of each pixel (foreground or
background), and the partial frame buffer to look up the intensities of the foreground pixels.
The intensities and the corresponding coordinates of the foreground are stored in the data
transfer FIFO. In order to save space in the FIFO, run-length encoding is applied.

The PC must be able to distinguish packets with foreground pixels from all other network
traffic. Therefore, a custom protocol that is based on the Ethernet protocol has been developed
to send regions of interest to the PC. Each packet consists of a header and a payload. The
header is comprised of the MAC addresses of the FPGA board and the PC. The payload contains
the run-length encoded pixel intensities. Each run is defined by its line coordinate in the image
(y), the start and the end of the run, as well as the corresponding pixel intensities.

2.3 Blob Analysis

A generic approach to blob detection on the PC is realized by applying a specially adapted
connected component labeling (CCL) method (Rosenfeld and Pfaltz, 1966). The idea of CCL
is to examine every pixel that exceeds a fixed threshold and to determine whether any of its
8 neighbors also exceed the threshold. Such pixels are grouped together. Since most of the
pixels received from the FPGA are foreground pixels, connected component labeling takes less
time than in cases where a full image has to be processed.

Features such as the bounding box and the center of mass are extracted on the fly as
described in (Bailey, 2011). The bounding box for pixels with the same label is computed
by constantly updating the minimum and maximum of X and Y coordinates of all connected
components. The center of mass for blob is computed by summing up the coordinates of each
pixel multiplied by their respective intensity values and normalized by the accumulated pixel
values.

3 Experimental Setup

The approach developed in this contribution has been implemented by using VHDL on Altera’s
DE2-70 board developed by Terasic. The core of the board is a Cyclone II 2C70 FPGA device
with 68,416 logic elements and 250 M4K RAM blocks. The FPGA is connected to several
interfaces that are used for communication with the PC, such as a serial port and a 100 Mbit/s
Ethernet port. A mvBlueCOUGAR-X 100 camera (Lansche, 2012) is mounted on one of two
general-purpose expansion headers (GPIO) of the board. The camera has a CMOS sensor that
delivers 10-bit grayscale images with resolution of up to 752x480 pixels and allows frame rates
of up to 117 frames per second. The camera has an on-board FPGA and can be configured from
a PC over a 1 Gbit/s Ethernet connection.

raw image traffic

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

80

Tr
af

fic
 (M

bi
t/s

)

Number of blobs

blob size = 4
blob size = 8

blob size = 12
blob size = 16
blob size = 20
blob size = 24
blob size = 28
blob size = 32
blob size = 36
blob size = 40
blob size = 44

Figure 3: Average traffic for blob sizes of 4x4 to 44x44 with step size of 4. All images have
sizes of 640x480 pixels with 8-bit grayscale values. Distance threshold TD is set to 2.
For comparison, the dashed horizontal line shows the bandwidth average bandwidth
usage of the camera running at 100fps.

4 Evaluation

The evaluation of the thresholding approach has been performed by measuring the network
traffic generated by the system under different loads. In order to evaluate the approach in a
systematic way, the number of foreground pixels must be controlled. However, it is impossible
to precisely control their number when using images of real cameras because of noise and other
influences. This problem can be overcome by using synthetic images instead. For this purpose,
a dataset of 2000 random synthetic images has been generated. The images vary in number of
blobs and size.

Figure 3 shows the dependency between the number of blobs, selected blob sizes and the
network traffic that results from sending run-length encoded regions to the PC. The graph
shows that a large number of blobs can be transferred to the PC as long as their size is small.
The camera can run at high frame rates while an accurate blob detection algorithm is performed
on the PC.

Figure 4 shows the usage of logic elements (LEs) dependent on the distance threshold.
Circuits with distance thresholds ranging from 0 to 30 have been synthesized by using Quartus.
The size of the circuit depends linearly on the distance threshold. No embedded multipliers are
used by the design. Table 1 shows the block RAM usage of different modules.

 0

 20k

 40k

 60k

 80k

 100k

 0 5 10 15 20 25 30

Lo
gi

c
El

em
en

ts Maximal number of LEs on Cyclone II

Figure 4: Usage of logic elements (LEs).

Table 1: Dedicated block RAM usage.
Module Memory bits
Interval FIFO 94,208
Partial frame buffer 400,000
Data transfer FIFO 524,288
Total 1,020,544

5 Conclusions and Future Work

The approach to intensity and distance thresholding presented in this contribution has several
advantages compared to simple intensity thresholding for images containing dots with smooth
borders caused by real light scattering. If the intensity threshold is used alone, it might cut
off important blob areas, or include too many unimportant pixels and overload the available
bandwidth. However, if it is used in combination with the distance threshold, it allows the
intensity threshold to be set to a relatively high value and still be able to capture important
pixels. The distance threshold extends the border of the blobs by a given distance, which
provides a way to control the bandwidth usage by trading it off against precision of subsequent
feature extraction.

The main advantage of using intensity and distance thresholding on FPGA is that it allows
high precision blob analysis to be performed on the PC. This saves development time of a
complex algorithm on FPGA side. Implementing an algorithm on an FPGAs is inherently harder
than implementing the same algorithm on PC. Another advantage is the flexibility offered by
the general purpose processor—the program performing blob analysis can be adapted in order
to meet the requirements of the virtual reality environment. This saves development cost and

shortens time to market. Yet another advantage of the PC is the library support for computer
vision applications—for example there are several blob detection algorithms available in the
OpenCV library (Bradski, 2000), whereas no such library exists for FPGAs.

Several directions for future work can be outlined. Currently, the bitmap that is used
for temporally storing foreground pixels is implemented by using registers. This has the
disadvantage that a large number of logic elements is used even when the distance threshold is
relatively low (1 to 5). However, by saving the bitmap in block RAM, it is possible to reduce
the usage of logic elements. This will result in circuits that can fit into smaller FPGAs, or use
these logic elements to perform other tasks.

Another direction for future work is to balance the available bandwidth and precision of
blob detection by adding a blob analysis circuit to the FPGA and by using it in parallel with
the blob analysis approach on the PC. Under high loads, the system on FPGA side can decide
to transmit approximately computed blob features instead of blob regions, which will reduce
bandwidth usage at the cost of precision.

Acknowledgments

The authors gratefully acknowledge the financial support of the BMBF in the FHprofUnt program
line; project 6-MIG grant No: 1759X08 and the DAAD PPP project, No 50750255, "FPGA based
Computer and Machine Vision". The authors would like to thank CMC Microsystems as the
tool provider and the Natural Sciences and Engineering Research Council of Canada for their
contributions to this project.

Bibliography

Bailey, D. (2011). Blob Detection and Labelling, chapter 11, pages 343–375. Wiley-IEEE Press,
1st edition.

Bochem, A., Herpers, R., and Kent, K. (2010). Hardware acceleration of blob detection for
image processing. In Third Int. Conf. on Advances in Circuits, Electronics and Micro-Electronics
(CENICS), pages 28–33.

Borgefors, G. (1986). Distance transformations in digital images. Computer Vision, Graphics,
and Image Processing, 34(3):344 – 371.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Herpers, R., Hetmann, F., Hau, A., and Heiden, W. (2005). The Immersion Square – A mobile

platform for immersive visualizations. In Aktuelle Methoden der Laser- und Medizinphysik: 2.
Remagener Physiktage 2004, pages 54–59.

Lansche, U. (2012). mvBlueCOUGAR-X documentation, V1.0b24.
Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in digital picture processing. J.

ACM, 13:471–494.
Scherfgen, D., Saitov, T., Herpers, R., and Dayangac, E. (2011). An optical laser-based user

interaction system for cave-type virtual reality environments. In Proc. of the 4th Russian-
German Workshop "Innovation Information Technologies: Theory and Practice".

	Introduction
	Approach
	Foreground Pixel Recognition on FPGA
	Intensity and Distance Thresholding
	Thresholding Implementation

	Data Transfer
	Blob Analysis

	Experimental Setup
	Evaluation
	Conclusions and Future Work
	Bibliography

