Remote IP Protection Using Timing Channels

Ariano-Tim Donda^{1,2} <u>Peter Samarin^{1,2}</u> Jacek Samotyja¹ Kerstin Lemke-Rust¹ Christof Paar²

¹Bonn-Rhein-Sieg University of Applied Sciences, Germany

²Ruhr University Bochum, Germany

December 4, 2014

Motivation: IP Protection Using Watermarks

Suspicious device

- "Trial" binary/bitstream is used in production
- Given a system: is it my software/bitstream?
- -> Insert a watermark into the IP

Challenge: bitstream and binary are encrypted

ICISC 2014

Remote IP Protection Using Timing Channels

Motivation: Embedding Watermarks in Side Channels

measurements must be done in proximity to the device

ICISC 2014

Remote IP Protection Using Timing Channels

This Work: Watermarks in the Timing Channel

- 1 Definition of the timing channel
- 2 Embedding watermarks in the timing channel
- 3 Case study: FPGA implementation
- 4 Measurements: remote and near-field

Definition: The Timing Channel

- Timing attacks on AES (Bernstein, 2005)
- Sender (using binary method)
 - Using the regular data channel:
 - Delays the output by some short time when sending a 1
 - No delay when sending a 0
- Receiver (using binary method)
 - Using the regular data channel:
 - Observes time differences between input and output: Δ_t
 - Compute $\overline{\Delta_t}$ by observing many Δ_t -s
 - Decode to 1 if $\Delta_t \geq \overline{\Delta_t}$
 - Decode to 0 if $\Delta_t < \overline{\Delta_t}$

Assumptions

- Known or observable input
- Observable output

The Timing Channel: An Example

Send binary sequence: "0110"

Timing channel can be used as a black box to send any kind of data

Authorship watermarks

- Is used to identify the owner of IP
- Always visible
- Codeword scheme
- Challenge response scheme
- Fingerprint watermarks (Easter egg watermarks)
 - Hidden most of the time
 - Becomes visible when the owner enters the right passphrase
 - Challenge response scheme

Authorship Watermarks: Codeword Scheme

Authorship Watermarks: Challenge Response Scheme

Fingerprint Watermarks: Challenge Response Scheme

Proof of Concept: CV Application on an FPGA

Proof of Concept: Embedding the Codeword Scheme

- Codeword initialized a circular shift register
- Delays are introduced right before finalizing packets
- PC: packet time stamp inspection to compute Δ_t between two consecutive timestamps

Proof of Concept: Embedding the Challenge Response Scheme

- Challenge response scheme using Trivium with a fixed key
- Use binarized image as a seed value for Trivium
- PC: Compute Trivium stream cipher seeded by received thresholded image

- FPGA and PC seperated by two routers and three switches in the department network of BRSU
- Compare received data with ground truth

Timing delays (μs)	Error rate
0	0.5047
20	0.3440
40	0.2682
60	0.2521
80	0.0936
100	0.0953
120	0.0583

Advantages

- Iow cost—no extra equipment necessary
- can be done remotely

Experiments: Measuring in Proximity

Experiments: Measuring in Proximity (contd.)

- Near-field experiments
 - Direct Ethernet cable measurement
 - EM measurement of Ethernet controller
 - EM measurement at the FPGA
 - Power traces
- Delays of two clock cycles are visible
- Can recover the whole watermark without noise

ICISC 2014

Remote IP Protection Using Timing Channels

Reverse engineering the binary/bitstream

- no tools publicly available for RE of FPGA bitstreams
- if tools are available (SW), a complete RE to remove all timing dependencies is hard work
- better to write from scratch!
- Wrapper attack
 - timing-normalizing wrapper to equalize all Δ_t
 - countered by sending several bits at a time (the sliding window approach)
 - increasing the delay decreases the operability of the wrapper
 - EM measurements still can reveal what the code does

Summary

- Timing channel definition
- Watermarks in the timing channel
- Proof-of-concept implementation on an FPGA
- Advantages
 - remote verification
 - Iow-cost solution
- Future work
 - Robust μC implementation
 - Fingerprint watermark implementation
 - Less obvious timing channel
 - Use only every 10th I/O pair (for example)
 - Verification over the Internet