
Detecting Similar Code Segments through Side Channel
Leakage in Microcontrollers

Peter Samarin1,2 and Kerstin Lemke-Rust1

1 Bonn-Rhein-Sieg University of Applied Sciences, Germany
2 Ruhr-Universität Bochum, Germany

♣❡t❡r✳s❛♠❛r✐♥❅❤✲❜rs✳❞❡, ❦❡rst✐♥✳❧❡♠❦❡✲r✉st❅❤✲❜rs✳❞❡

Abstract. We present new methods for detecting plagiarized code segments using
side-channel leakage of microcontrollers. Our approach uses the dependency of side-
channel leakage on processed data and requires that the implementation under test
accepts varying known input data. Detection tools are built upon a similarity matrix
that contains the absolute correlation coefficient for each combination of time samples
of the two possibly different implementations as result of side channel measurements.
These methods are evaluated on smartcards with ATMega163 microcontroller using
different test applications written in assembly language. We show that our methods are
highly robust even against a skilled adversary who modifies the original assembly code
in various ways. Our approach is non-intrusive, so that the application does not need
to be additionally watermarked in order to be protected—the resulting pattern of data
leakage of the microcontroller executing the code is considered as its own watermark.

Keywords: Side-Channel Watermarking, IP Protection, Code Similarity Analysis, Similar-
ity Matrix, Software Reverse Engineering, Embedded Software.

1 Introduction

Intellectual property (IP) theft of embedded software for microcontrollers with effective
read-out protection of memories constitutes a hard problem for IP protection nowadays. A
direct binary analysis is not feasible as the suspicious program code needs to be physically
extracted from the internal code memory first which constitutes a hard and cost-intensive
problem in practice. To address this problem, the use of side channel leakage was first pro-
posed by Becker et al. [1] by implementing additional watermarking code for a leakage gen-
erator. In their followup work, Becker et al. [2] have used the coincidence that ATMega8
microcontrollers leak the Hamming weight of the opcode when an instruction is fetched.
The power traces are converted into strings, and the strings are compared using string match-
ing algorithms, such as edit distance and Boyer-Moore-Horspool algorithm. However, this
approach relies on processor-specific properties that do not in general apply—not all mi-
crocontrollers leak Hamming weights of the opcodes. In addition, Hamming weights of
opcodes are not unique, such that many different instructions can have the same Hamming
weight. Also, the method is not robust against code-transformation attacks that exchange
assembly instructions by others leading to the same output, replace registers and RAM and
flash addresses of variables and data.

A different approach was taken by Strobel et al. [3], where the authors tried to disas-
semble instructions from electromagnetic (EM) traces of PIC16F687 microcontroller by

training a classifier that is able to distinguish 87.60% of instruction classes correctly. This
approach, however, has been only tested on a small range of microcontrollers.

Another way to prove ownership is to look for dependency between the power con-
sumption and executed code. Durvaux et al. [4] compute similarity of two power traces us-
ing Pearson’s correlation along the time axis. The intrinsic side channel leakage of different
implementations is compared without the need of additional watermarking code. However,
their proposed method shows low robustness if the adversary adds dummy instructions to
the IP protected code.

In this work we propose a new method that addresses the software plagiarism problem
on a much finer level—our method can not only identify whether the whole program is a
plagiarism, but also which code segments have been plagiarized. In addition, our method
shows a significantly better robustness against additions of dummy code when compared to
the current state of the art approach.

2 Our Approach

Since the pioneering work of Kocher et al. [5] it is well known that during code execution
data dependencies in microcontroller programs induce side-channel leakage that is measur-
able in the power consumption of the microcontroller or in its electromagnetic (EM) emana-
tion. And side-channel leakage discloses the positions in time where a targeted intermediate
data item is processed, such that repeatedly processing the same data using the same im-
plementation will result in a very similar physical leakage. Our approach builds upon this
finding for the use in IP protection. Considering the framework for IP protection of [6],
our contribution introduces new detection tools for IP protection using side channel leak-
age. Our main approach requires that an equivalent input data channel is available for the
configuration of the program code of the genuine implementation and the second unknown
and possibly suspicious implementation. The existence of an equivalent input data channel
is a reasonable assumption when different program code is used for the same purpose. Our
objective is to provide robust similarity detection tools using code and data characteristics
in two given implementations.

2.1 Extraction: Data Acquisition

The objective of the data acquisition step is the collection of N side channel traces of the
genuine program and N side channel traces of the unknown program, both processing the
same list of N varying input data. This can be achieved either in a chosen-input scenario but
also in a known-input scenario. In the latter case the unknown program has to be measured
first and a chosen-input variant of the genuine program has to be available that is fed with the
same input data afterwards. Each set of measurements and their corresponding input data
represent a soft physical hash value [6] or a fingerprint of the genuine and unknown code,
respectively. To make comparison of similarity easier, it is recommended to use an identical
measurement setup for both implementations. Details on side-channel measurement setups
can be found in [5, 7].

2.2 Extraction: Preprocessing

Before comparing the two fingerprints, the number of samples per trace is reduced by com-
pressing them, e.g., by extracting the mean of each clock cycle. In principle, this preprocess-

ing step is optional, but useful in practice to reduce the computation time in the following
detection phase.

2.3 Detection: Similarity Matrix

As result of the extraction phase, we build two matrices:

1. An N×M1 matrix Tg enui ne that contains N rows of compressed side channel traces with

M1 samples each. Tg enui ne contains the extracted measurement data from the genuine

implementation.
2. An N ×M2 matrix Tunknown that contains N rows of compressed side channel traces

with M2 samples each. Tunknown contains the extracted measurement data from the un-
known implementation.

In the following, we denote an entry of a matrix T as Ti j , the j -th column vector as

T:, j , and the i -th row vector as Ti ,:. An entry of a vector x is denoted by xi and xT is the

transpose of x .
For the computation of similarity between the data leakage of the genuine and the un-

known code the sample Pearson correlation coefficient

ρ̂(x , y) =
Σ

N
i=1(xi − x̂)(yi − ŷ)

σ̂x σ̂y

is used, where x and y are vectors of length N , x̂ and ŷ are the sample means of x and y,
respectively, and σ̂x , σ̂y are their respective sample standard deviations.

The basis for our detection methods is the M1×M2 similarity matrix S. Each entry Si j is

the absolute correlation coefficient of the column vector Tg enui ne :,i
and the column vector

Tunknown:, j
.

S =

|ρ̂(Tg enui ne :,1
,Tunknown:,1

)| · · · |ρ̂(Tg enui ne :,1
,Tunknown:,M2

)|

· · · · ·
· · · · ·
· · · · ·

|ρ̂(Tg enui ne :,M1
,Tunknown:,1

)| · · · |ρ̂(Tg enui ne :,M1
,Tunknown:,M2

)|

It holds 0 ≤ Si j ≤ 1 for all entries of S. If Si j is close to 1 this indicates a high similarity

between sample point i in the genuine implementation and sample point j in the unknown
implementation, whereas entries with Si j close to 0 indicate that there is no similarity at

these two sample points.
In the final step, we need to make a decision whether the two implementations are sim-

ilar or not as a whole, and whether they contain highly similar subparts.

Detection Tool: Visual Inspection The similarity matrix pinpoints the sequence of data
processing in the unknown implementation and its analysis discloses the structure of the
unknown program code. To quickly find code similarities, we plot the resulting similarity
matrix and inspect it visually. Visual inspection is an extremely powerful tool when the
unknown program contains a one-to-one copy of the original code, in which case the matrix
will contain many diagonal lines with absolute correlation coefficients close to 1.

Detection Tool: Maximum Projection Rows and columns of the similarity matrix S rep-
resent the time measured in samples or clock cycles. To analyze the similarity matrix com-
putationally, we project the matrix either onto the rows or onto the columns by using the
maximum function. By projecting along the rows we can see which clock cycles of the gen-
uine implementation are covered by the unknown implementation. Concretely, the maxi-
mum projection of S onto the rows results in an M2-dimensional vector

prow
T =
�

max
i=1,··· ,M1

Si1, · · · , max
i=1,··· ,M1

Si M2

�

On the other hand, projecting the matrix onto the columns will reveal the clock cycles
where the genuine implementation processes the same data as the unknown one. The M1-
dimensional vector pcol is computed as

pcol =

max
j=1,··· ,M2

S1 j

...
max

j=1,··· ,M2

SM1 j

For both projection vectors it holds that sub-parts with high correlation values in succes-
sion suggest that the same intermediate data is processed using the same code segment by the
microcontroller. For the quantification of similarity we use the mean absolute correlation
coefficient calculated over all entries of prow and pcol

ρr ow =
1

M2

M2
∑

i=1

pr ow i
and ρcol =

1

M1

M1
∑

i=1

pcol i
.

Accordingly, local similarity is assessed by computing the mean absolute correlation coeffi-
cient over pre-selected sub-parts of the vectors prow and pcol .

3 Experiments

We evaluate our approach on different smartcards with ATmega163 microcontroller [8].
It is an 8-bit RISC microcontroller based on the AVR architecture running at 4MHz with
16K bytes of flash memory, 1024 bytes internal SRAM, and 32 general-purpose registers
[9]. The processor uses a two-stage pipeline, where one instruction is executed while the
next instruction is fetched and decoded. We measure the voltage variations of the smartcard
over a resistor inserted between the ground path from the smartcard socket to the power
supply using a digital oscilloscope (PicoScope 6402C) running at the sampling frequency of
325MHz. For each implementation we recorded 10.000 power traces.

We test our approach on five implementations of AES encryption written in assembly
language. The AES implementations serve as an example of several implementations of the
same data-dependent algorithm. Thereby we target the problem of distinguishing several
implementations of the same algorithm or application. The purpose of our experiments is
not only to show that identical implementations can be detected as a whole, but also which
of their code segments are similar or even identical to each other.

Our test implementations differ in their overall duration and structure. An overview is
shown in Figure 1. AES-0 was written by us, AES Labor is available from [10], Fast, Furious,

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400

Clock cycle

AES-0 PU L AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB MC∗ KE AK SB KE AK SPO

AES Labor PU KE PU L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK SPO

AES Furious PU L KE# L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK SPO

AES Fast PU L KE# L AK R R R R R R R R R AK SPO

AES Fantastic PU L AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB MC∗ AK KE SB AK SPO

PU - push registers
PO - pop registers
*, # - identical code

L - load key/plaintext
S - store ciphertext

KE - key expansion
AK - add round key

SB - shift rows and subbytes
MC - mix columns
R - one AES round in Fast

Fig. 1. AES implementations used in our experiments.

and Fantastic are available from [11]. Fast uses two sbox tables, which results in data leakage
that is very different from the leakage of all other implementations. Some code parts of
different implementations are the same. For example, the key expansion of Fast and Furious
are identical. The MixColumns operation of AES-0 and AES Fantastic follow the same low-
level specification of the algorithm but utilize different registers and data addresses.

We explore two cases of plagiarism: i) The passive adversary copies the entire machine
code or parts thereof into his own implementation. This case is considered in Section 3.1. ii)
The active adversary modifies the machine code in various ways before copying it or parts
thereof into his own implementation. This case is covered in Section 3.2.

3.1 Plagiarized Code without Modification

Visual inspection By visually inspecting a similarity matrix, we can detect identical and
similar code. Figure 2 shows segments of similarity matrices for all implementations and the
following AES operations: ExpandKey1, AddRoundKey2, ShiftRows2 and SubBytes2, and
MixColumns2, where subscripts denote the round of the corresponding function. When
comparing each implementation to itself, we see long lines of high correlation along the
diagonal in the similarity matrices, as shown in Figure 10. This is expected, since the same
implementations process the same data using the same sequence of instructions.

Several observations can be made. For example, key expansion is different in all imple-
mentations except for Fast and Furious, where it is identical. AddRoundKey2 is similar for
all implementations except for Fast. MixColumns2 is identical in AES-0 and Fantastic, except
for the registers used. The other operations are similar but not identical, and we can see that
the similar values are processed at slightly different times.

Maximum projection Figure 3 shows the results of projecting the maximum values onto
the rows of the similarity matrices for Furious and all the other tested AES implementa-
tions. When comparing Furious with Furious, we have used two different sets of traces. The
maximum projection for Furious is the highest when it is compared to itself. The graphs
also suggest that Fast and Furious implementations have identical key expansion algorithm.
The high plateaus in AES Labor are executions of AddRoundKey. The correlation at the
same times is still significant for all other implementations except for Fast, for which only
the very first and the very last key additions shows high correlated sequences. By projecting
a known implementation onto unknown implementation, we can uncover the structure of
the unknown implementations, as shown in Figure 7.

Maximum projection graphs can be summarized by computing the mean absolute cor-
relation coefficient. The resulting number indicates the similarity between the implemen-

AES-0

AES L
ab

or

Fu
rio

us

Fa
st

Fa
nta

st
ic

AES-0

AES L
ab

or

Fu
rio

us

Fa
st

Fa
nta

st
ic

AES-0

AES Labor

Furious

Fast

Fantastic

AES-0

AES L
ab

or

Fu
rio

us

Fa
st

Fa
nta

st
ic

AES-0

AES L
ab

or

Fu
rio

us

Fa
st

Fa
nta

st
ic

ExpandKey ShiftRows and SubBytes

AddRoundKey

MixColumns

1

2

2

2

Fig. 2. Segments of similarity matrices for selected subparts of all AES implementations. Black points
signify high absolute correlation (close to 1), and white points signify low correlation (close to 0). Sub-
scripts of selected AES subparts denote the AES round: ExpandKey1 is the key expansion in the first
AES round (the key will be used by AddRoundKey2). RijndaelFast has no clear distinction between
AddRoundKey, ShiftRows, SubBytes, and MixColumns, so that we consider its entire second round
when we compare it to the other implementations.

tations. Table 1 shows the mean absolute correlation coefficients for all our test AES im-
plementations. Identical implementations have the mean correlation close to 1.0. Similar
implementations, such as AES-0, Furious, and Fantastic result in high mean correlation coef-
ficients. Even though Fast is very different from the other implementations, its intermediate
values are similar enough to produce a significant correlation, so that we can conclude that
Fast is performing an AES encryption. In contrast, when different data is processed, the
mean absolute correlation is low, as shown in Figure 4.

Table 1. Mean absolute correlation of projecting traces of each implementation (row) into traces of
each other implementation (column).

AES-0 AES Labor Furious Fast Fantastic
AES-0 0.97 0.41 0.63 0.33 0.53
AES Labor 0.42 0.91 0.46 0.29 0.39
Furious 0.61 0.44 0.96 0.45 0.54
Fast 0.35 0.32 0.46 0.96 0.29
Fantastic 0.58 0.40 0.62 0.30 0.93

To reveal more details about a suspicious implementation at hand, the maximum pro-
jection graph can also be summarized by computing the mean absolute correlation for each
known operation, as shown in Table 2. Here we can see which subparts of the code are sim-
ilar or even identical. For example, we know that the key expansion of Fast and Furious is
identical; and that AES-0 and Fantastic have similar MixColumns.

3.2 Modified Plagiarized Code

To simulate an attacker who actively manipulates plagiarized code, we have selected Furious
as our genuine implementation and modified it in various ways, cf. [4, 12].

PU - push registers

PO - pop registers

KE - key expansion

AK - add round key

L - load key/plaintext

S - store ciphertext
SB - shift rows and subbytes

MC - mix columns

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

AES-0 in Furious
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

AES Labor in Furious
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Furious in Furious
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Fast in Furious
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Fantastic in Furious
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

Fig. 3. Maximum projection of all AES implementations onto Furious.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Fig. 4. Absolute correlation of Furious with Furious when non-matching data was used. Total mean
absolute correlation equals to 0.061. High peaks happen when constants are processed (e.g. loading a
constant into a register).

Address modification (addr) In this attack, we change the usage of all registers of the Furious
implementation. For example, register r✽ is consistently used instead of r✵. In addition, the
variables for the key, the expanded key, the plaintext, and the ciphertext are stored in dif-
ferent locations in the SRAM. Finally, the constants s❜♦① and ①t✐♠❡ are moved to different
flash addresses.

AK SB MC KE
AES-0 0.96 0.97 0.98 0.97
AES Labor 0.64 0.33 0.36 0.43
Furious 0.68 0.65 0.73 0.46
Fast 0.45 0.31 0.26 0.44
Fantastic 0.64 0.58 0.75 0.41

(a)→AES-0

AK SB MC KE
0.68 0.31 0.38 0.40
0.96 0.97 0.96 0.88
0.73 0.38 0.40 0.41
0.48 0.24 0.19 0.39
0.62 0.31 0.37 0.43

(b)→AES Labor

AK SB MC KE
0.71 0.65 0.71 0.46
0.75 0.40 0.37 0.45
0.95 0.98 0.98 0.96
0.47 0.31 0.27 0.95
0.65 0.72 0.68 0.41

(c)→Furious

AK KE R
AES-0 0.69 0.46 0.28
AES Labor 0.73 0.45 0.23
Furious 0.85 0.95 0.27
Fast 0.97 0.95 0.98
Fantastic 0.64 0.40 0.25

(d)→Fast

AK SB MC KE
0.66 0.57 0.75 0.33
0.62 0.32 0.35 0.40
0.62 0.71 0.70 0.32
0.43 0.27 0.25 0.31
0.96 0.96 0.97 0.90

(e)→Fantastic
Table 2. Mean absolute correlation of projecting similarity matrices of all AES implementations
into the implementations denoted by symbol “→”. Numbers in bold signify identical code. AK-
AddRoundKey, SB-SubBytes, MC-MixColumns, KE-KeyExpansion.

Instruction reordering (swap) In this attack, we change the order of individual instructions,
and also swap entire blocks of instruction without changing the number of clock cycles
required to perform the encryption. Concretely, we change the order of loading and saving
the key, plaintext, and ciphertext; the order of applying ❳❖❘ in AddRoundKey; the order of
rows when computing ShiftRows and SubBytes; and the order of applying ❳❖❘s in the key
scheduler. On several occasions, in order to change the sequence of loading variables, we
change instructions such as, e.g., ▲❉ ❘✵✱ ❩✰ (opcode 9001) into instructions like ▲❉❉ ❘✵✱

❩✰✵ (opcode 8000).

Combination of addr and swap (addr+swap) Here, we combine the address changes and the
swapping of the instructions.

Insert dummy NOPs (dummy) This version has ◆❖P instructions inserted throughout the
code: in the key expansion, in SubBytes, ShiftRows, and MixColumns. As a result, the en-
cryption needs 792 additional clock cycles to finish.

Insert other dummy instructions (dummy smart) The problem with ◆❖P instructions is that
on the ATmega163 they can be easily distinguished because they have low power consump-
tion in comparison to the other instructions. To make the power consumption appear more
genuine, we insert dummy instructions that manipulate the state for a short amount of
time, and change it back before resuming with encryption. Figure 8 shows several assembly
macros that we spread throughout the code that reuse intermediate values of the implemen-
tation. This version also has 792 additional clock cycles.

All attacks combined (dummy smart+addr+swap) This attack introduces 792 smart dummy
cycles and combines them with the add+swap attack.

MixColumns

AddRoundKey

addr

swap

addr+swap

dummy NOPs

genuine

dummy smart

dummy smart
+addr+swap

addr
swap

addr+swap
dummy NOPs

genuine

dummy smart
dummy smart
+addr+swap

addr
swap

addr+swap

dummy NOPs

genuine

dummy smart

dummy smart
+addr+swap

addr

swap

addr+swap

dummy NOPs

genuine

dummy smart

dummy smart
+addr+swap

ShiftRows and SubBytes

ExpandKey1

2

22

2

Fig. 5. Similarity matrices of plagiarism attacks on RijndaelFurious (denoted by “original”). X and Y
axes are measured in clock cycles.

Visual inspection Figure 5 shows excerpts of the similarity matrices that correspond to the
genuine implementation along the Y-axis, and the manipulated implementations along the
X-axis for selected AES functions. Figures 11 to 16 show the full similarity matrices. Code
with manipulations that do not change the order of instructions can be well recognized
because of the long lines along the diagonals of the matrices.

Maximum projection Figures 6 and 9 show the maximum projection method applied on
similarity matrices of Furious with all the other implementations. The versions addr and
swap produce the largest impact on the maximum projection method, however, we are still
able to distinguish MixColumns quite well. On the other hand, despite introducing 792
dummy clock cycles, we can argue with a high confidence that the presented system contains
large portions of our genuine implementation.

Table 3 shows the total mean absolute correlation coefficients and the operation-wise
absolute mean correlation coefficient for Furious and its modified versions. Here we can
see that our method is well-suited for finding versions of our code with added dummy
instructions—even 792 additional dummy clock cycles have little effect on the mean abso-
lute correlation, which, at ❃✵✳✽ is high enough to suspect a plagiarism. On the other hand,
by exchanging registers and choosing different addresses for variables and constants in the
memory, as in addr, the attacker can decrease the mean absolute correlation by a large mar-
gin. However, after cross-referencing the similarity matrix, as shown in Figure 11, we see an
almost continuous line along its diagonal, implying an identical implementation. Swapping

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

addr in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

swap in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

addr+swap in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

dummy NOPs in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

dummy smart in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500

|C
o
rr

e
la

ti
o
n
|

Clock cycle

dummy smart+addr+swap in genuine
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

PU - push registers

PO - pop registers

KE - key expansion

AK - add round key

L - load key/plaintext

S - store ciphertext
SB - shift rows and subbytes

MC - mix columns

Fig. 6. Maximum projection of modified implementations onto genuine Furious.

code chunks does not help much, since the individual parts are still well-recognizable in the
operation-wise mean correlation table and in the similarity matrix. Thus, in order to suc-
cessfully avoid raising suspicion, an attacker will have to use a plethora of countermeasures
at a much finer level, which requires a considerable amount of effort to obfuscate the code
without introducing bugs and unintended side effects.

genuine
genuine 0.96
addr 0.64
swap 0.73
addr+swap 0.52
dummy NOPs 0.84
dummy smart 0.83
dummy smart+addr+swap 0.51

(a)

AK SB MC KE
0.95 0.98 0.98 0.96
0.61 0.52 0.76 0.60
0.84 0.62 0.78 0.80
0.59 0.37 0.64 0.45
0.92 0.72 0.87 0.86
0.82 0.75 0.85 0.85
0.54 0.36 0.63 0.44

(b)
Table 3. (a) Total mean absolute correlation of modified Furious implementations projected into the
genuine Furious implementation. (b) Operation-wise mean absolute correlation of modified Furious
implementations projected into the genuine Furious implementation.

4 Discussion

Our work is built upon the assumption that identical code produces almost identical side
channel leakage on an identical (but physically distinct) microcontroller platform. In our
experiments we studied five different AES implementations and observed significant cor-
relation coefficients in each similarity matrix. This is due to the fact that all test programs
are implementations of the same task and process the same data. However, as exemplar-
ily shown in Fig. 3, the maximum projection of identical implementations clearly stands
out when compared to different implementations, and thereby underlines that the same se-
quence of instructions is clearly highlighted and allows us to detect plagiarized software of
a passive adversary with high accuracy.

In the case when an adversary has spent some effort modifying the original code, we
come to the conclusion that our method achieves a good robustness against changed registers
and added dummy cycles. The second case is a clear advantage compared to the method of
Durvaux et al. [4] that turned out to be very sensitive to the addition of 57 dummy clock
cycles, whereas we worked with 792 additional dummy cycles. In addition, in contrast to the
method of Durvaux et al., we are not forced to cut the recorded traces to have the same length
and are able to use all recorded information. The robustness of our approach to adding
smart dummy instructions is only slightly worse compared to dummy NOPs and for many
code segments the original sequence is still revealed in the maximum projection. Similar
observations hold when instructions are swapped.

In this paper we have used static, time-aligned, and constant-time applications to test our
approach. However, we are confident that our methods are also applicable in a more general
setting, e.g., with code branches and nondeterministic parts. A further adversary strategy
could be to implement dynamic code generation on the microcontroller as, e.g., proposed
by [12] which will make our approach more difficult if the frequency of run-time code
generation is high. As result, an adversary is forced to combine many kinds of modifications
and put a considerable amount of effort in order to reduce successful plagiarism detection
that usually lead to enhanced code complexity and execution time.

Further promising properties of our approach can be seen in Fig. 4. Even if the data of
the two implementations do not match, our approach reveals smaller but still significant
correlation signals. These correlation signals are assumed to be due to code similarities and
lead to the conjecture that our methods are still able to detect the similarity of two programs

if there is a lack of any input data channel. Interestingly, this observation gives reasons to
assume that even the implementation of an intrinsic data masking scheme by the adversary
might be not sufficient.

Thinking from a higher-level perspective, our tools detect whether a program processes
identical data or not. Hereby, patent infringements on the algorithm level may be possible to
detect. For example, an unlicensed use of a patented algorithm with a specific data processing
can be proven using the data dependent side-channel leakage based on our approach.

5 Conclusions

We have presented and evaluated new methods based on characteristic data leakage for de-
tecting software plagiarism on a microcontroller platform. The conducted experiments give
evidence that these methods are highly robust to many different code transformations and
that the resulting pattern of data leakage of the microcontroller executing the code can be
considered as its own watermark. Promising research directions are opened for connecting
horizontal and vertical dimensions for code sequence analysis through side channel traces.

Acknowledgement This work has been supported in parts by the German Federal Min-
istry of Education and Research (BMBF) through the project DePlagEmSoft, FKZ 03FH015I3.

References

1. G. T. Becker, W. Burleson, and C. Paar, “Side-channel watermarks for embedded software,” in 9th
IEEE NEWCAS Conference (NEWCAS 2011), 2011.

2. G. Becker, D. Strobel, C. Paar, and W. Burleson, “Detecting software theft in embedded systems:
A side-channel approach,” Information Forensics and Security, IEEE Transactions on, vol. 7, no. 4,
pp. 1144–1154, 2012.

3. D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar, “SCANDALee: A Side-ChANnel-
based DisAssembLer using Local Electromagnetic Emanations,” in Design, Automation, and Test
in Europe (DATE), March 9–13 2015.

4. F. Durvaux, B. Gérard, S. Kerckhof, F. Koeune, and F.-X. Standaert, “Intellectual property pro-
tection for integrated systems using soft physical hash functions,” in Information Security Appli-
cations (D. Lee and M. Yung, eds.), vol. 7690 of LNCS, pp. 208–225, Springer Berlin Heidelberg,
2012.

5. P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology —
CRYPTO’ 99: 19th Annual International Cryptology Conference Santa Barbara, California, USA,
August 15–19, 1999 Proceedings (M. Wiener, ed.), (Berlin, Heidelberg), pp. 388–397, Springer
Berlin Heidelberg, 1999.

6. S. Kerckhof, F. Durvaux, F.-X. Standaert, and B. Gerard, “Intellectual property protection
for FPGA designs with soft physical hash functions: First experimental results,” in Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Symposium on, pp. 7–12, June 2013.

7. S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks Revealing the Secrets of Smart Cards.
Springer US, 2007.

8. Atmel, ATmega163(L) Datasheet (revision E), Feb. 2003.
9. Atmel, Atmel AVR 8-bit Instruction Set Manual (revision 0856J), July 2014.

10. D. Otte, “Avr-crypto-lib.” https://www.das-labor.org/wiki/AVR-Crypto-Lib/en.
11. B. Poettering, “AVRAES: The AES block cipher on AVR controllers.”
12. D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J.-L. Lanet, “Runtime code poly-

morphism as a protection against side channel attacks,” in Information Security Theory and Prac-
tice: 10th IFIP WG 11.2 International Conference, WISTP 2016, Heraklion, Crete, Greece, September
26–27, 2016, Proceedings (S. Foresti and J. Lopez, eds.), pp. 136–152, Cham: Springer International
Publishing, 2016.

6 Appendix

PU - push registers

PO - pop registers

KE - key expansion

AK - add round key

L - load key/plaintext

S - store ciphertext
SB - shift rows and subbytes

MC - mix columns

R - one AES round in Fast

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Furious in AES-0
PU L AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB MC KE AK SB KE AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Furious in AES Labor
KE PU L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Furious in Fast
PU L KE L AK R R R R R R R R R AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

Furious in Fantastic
PU L AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB MC AK KE SB AK S PO

Fig. 7. Maximum projection of Furious onto all other AES implementations.

LDI ZL, 0x00

LPM \tmp, Z

EOR \tmp, \tmp

PUSH \tmp

LDI \tmp, \c

EOR \reg, \tmp

POP \tmp

INC \reg

DEC \reg

ROL \reg

ROR \reg

NEG \reg

NEG \reg

1 2 3

4 5

6

MOV \tmp, \reg ;; save register

LDI ZH, hi8(hd_temp)

LDI ZL, lo8(hd_temp)

LD \reg, z

MOV \reg, \tmp ;; restore register

8

PUSH \reg1

PUSH \reg2

PUSH \reg3

EOR \reg1, \reg2

EOR \reg2, \reg3

EOR \reg3, \reg1

POP \reg3

POP \reg2

POP \reg1

7

Fig. 8. Assembly macros used to insert dummy smart instructions. Macros 1,2,3 change the content
of a chosen register in one clock cycle, and change it back in the next one. Macro 8 is used to remove
Hamming-distance leakage between consecutive SRAM reads or writes by performing a dummy read
in the SRAM at some constant address. Macro 5 is used before some of the sbox lookups in the flash
memory. Macro 6 is applied to an unused register and leaks data from preceding operations that have
use the ALU (arithmetic-logic unit). Macro 4 loads a random constant value chosen at compile time
into a register and restores the register right after that. Macro 7 uses XORs on three selected registers
and immediately restores them to their respective original values.

PU - push registers

PO - pop registers

KE - key expansion

AK - add round key

L - load key/plaintext

S - store ciphertext
SB - shift rows and subbytes

MC - mix columns

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in addr
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in swap
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in addr+swap
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in dummy NOPs
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in dummy smart
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000 3500 4000

|C
o
rr

e
la

ti
o
n
|

Clock cycle

genuine in dummy smart+addr+swap
PU L KE L AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB MC AK SB AK S PO

Fig. 9. Maximum projection of genuine Furious onto all modified AES implementations.

Fig. 10. Similarity matrix of Furious with itself.

Fig. 11. Similarity matrix of addr and the genuine Furious AES implementations.

Fig. 12. Similarity matrix of swap and the genuine Furious AES implementations.

Fig. 13. Similarity matrix of addr+swap and the genuine Furious AES implementations.

Fig. 14. Similarity matrix of dummy NOPs and the genuine Furious AES implementations.

Fig. 15. Similarity matrix of dummy smart and the genuine Furious AES implementations.

Fig. 16. Similarity matrix of dummy smart+addr+swap and the genuine Furious AES implementa-
tions.

